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of Fermat as opposed to Descartes)—won out, as a result of the work of
Euler, Lagrange, and Monge. Hence the term “analytic geometry” implied
proof as well as the use of the algebraic method. Consequently we now speak
of analytic geometry as opposed to synthetic geometry, and we no longer
mean that one is a method of invention and the other of proof. Both are
deductive.

In the meantime the calculus and extensions such as infinite series
entered mathematics. Both Newton and Leibniz regarded the calculus as an
extension of algebra; it was the algebra of the infinite, or the algebra that
dealt with an infinite number of terms, as in the case of infinite series. As late
as 1797, Lagrange, in Théorie des fonctions analytiques, said that the calculus
and its developments were only a generalization of elementary algebra.
Since algebra and analysis had been synonyms, the calculus was referred to
as analysis. In a famous calculus text of 1748 Euler used the term “‘in-
finitesimal analysis” to describe the calculus. This term was used until the
late nineteenth century, when the word *‘analysis” was adopted to describe
the calculus and those branches of mathematics built on it. Thus we are left
with a confusing situation in which the term “analysis” embraces all the
developments based on limits, but “analytic gcometry” involves no limit
processes.
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The Mathematization of Science

So that we may say the door is now opened, for the first
time, to a new method fraught with numerous and wonderful
results which in future years will command the attention of
other minds. GALILEO GALILEI

1. Introduction

By 1600 the European scientists were unquestionably impressed with the
importance of mathematics for the study of nature. The strongest evidence
of this conviction was the willingness of Copernicus and Kepler to overturn
the accepted laws of astronomy and mechanics and religious doctrines for
the sake of a theory which in their time had only mathematical advantages.
However, the astonishing successes of modern science and the enormous
impetus to creative work that mathematics derived from that source probably
would not have come about if science had continued in the footsteps of the
past. But in the seventeenth century two men, Descartes and Galileo,
revolutionized the very nature of scientific activity. They selected the con-
cepts science should employ, redefined the goals of scientific activity, and
altered the methodology of science. Their reformulation not only imparted
unexpected and unprecedented power to science but bound it indissolubly
to mathematics. In fact, their plan practically reduced theoretical science to
mathematics. To understand the spirit that animated mathematics from
the seventeenth through the nineteenth centuries, we must first examine
the ideas of Descartes and Galileo.

2. Descartes’s Concept of Science

Descartes proclaimed explicitly that the essence of science was mathematics.
He says that he “neither admits nor hopes for any principles in Physics
other than those which are in Geometry or in abstract mathematics, be-
cause thus all phenomena of nature are explained and some demonstrations
of them can be given.” The objective world is space solidified, or geometry
incarnate. Its properties should therefore be deducible from the first principle
of geometry.
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326 THE MATHEMATIZATION OF SCIENCE

Descartes elaborated on why the world must be accessible and reducible
to mathematics. He insisted that the most fundamental and reliable proper-
ties of matter are shape, extension, and motion in space and time. Since
shape is just extension, Descartes asserted, *“Give me extension and motion
and I shall construct the universe.” Motion itself resulted from the action
of forces on molecules. Descartes was convinced that these forces obeyed in-
variable mathematical laws; and, since extension and motion were mathe-
matically expressible, all phenomena were mathematically describable.

Descartes’s mechanistic philosophy extended even to the functioning
of the human body. He believed that laws of mechanics would explain life
in man and animals, and in his work in physiology he used heat, hydraulics,
tubes, valves, and the mechanical actions of levers to explain the actions of
the body. However, God and the soul were exempt from mechanism.

If Descartes regarded the external world as consisting only of matter
in motion, how did he account for tastes, smells, colors, and the qualities of
sounds? Here he adopted the old Greek doctrine of primary and secondary
qualities which, as stated by Democritus, maintained that *“sweet and bitter,
cold and warm, as well as the colors, all these things exist but in opinion
and not in reality; what really exist are unchangeable particles, atoms, and
their motions in empty space.” The primary qualities, matter and motion,
exist in the physical world; the secondary qualities are only effects the
primary qualities induce in the sense organs of human beings by the impact
of external atoms on these organs.

Thus to Descartes there are two world# one, a huge, harmoniously
designed mathematical machine existing in space and time, and the other,
the world of thinking minds. The effect of elements in the first world on the
second produces the nonmathematical or secondary qualities of matter.
Descartes affirmed further that the laws of nature are invariable, since they
are but part of a predetermined mathematical pattern, and that God could
not alter invariable nature. Here Descartes denied the prevailing belief
that God continually intervened in the functionihg of the universe.

Though Descartes’s philosophical and scientific doctrines subverted
Aristotelianism and Scholasticism, he was a Scholastic in one fundamental
respect: he drew from his own mind propositions about the nature of being
and reality. He believed that there are a priori truths and that the intellect
by its own power may arrive at a perfect knowledge of all things; he stated
laws of motion, for example, on the basis of a priori reasoning. (Actually in
his biological work he did experiment, and he drew vital conclusions from
the experiments.) However, apart from his reliance upon a priori principles,
he did promulgate a general and systematic philosophy that shattered the
hold of Scholasticism and opened up fresh channels of thought. His attempt
to sweep away all preconceptions and prejudices was a clear declaration of
revolt from the past. By reducing natural phenomena to purely physical
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happenings he did much to rid science of mysticism and occult forces.
Descartes’s writings were highly influential; his deductive and systematic
philosophy pervaded the seventeenth century and impressed Newton,
especially, with the importance of motion. Daintily bound expositions of
his philosophy even adorned ladics’ dressing tables.

3. Galileo’s Approach to Science

Though Galileo Galilei’s philosophy of science agreed in large part with
Descartes’s, it was Galileo who formulated the more radical, more effective,
and more concrete procedures for modern science and who by his own work
demonstrated their effectiveness.

Galileo (1564-1642), born in Pisa to a cloth merchant, entered the
University of Pisa to study medicine. The courses there were still at about
the level of the medieval curriculum; Galileo learned his mathematics
privately from a practical engineer, and at the age of seventeen switched
from medicine to mathematics. After about eight years of study he applied
for a teaching position at the University of Bologna but was refused as not
sufficiently distinguished. He did secure a professorship of mathematics at
Pisa. While there, he began to attack Aristotelian science; and he did not
hesitate to express his views even though his criticisms alienated his col-
leagues. He had also begun to writc important mathematical papers that
aroused jealolsy in the less competent. Galileo was made to feel uncomfort-
able and left in 1592 to accept the position of professor of mathematics at
the University of Padua. There he wrote a short book, Le mecaniche (1604).
After eighteen years at Padua he was invited to Florence by the Grand Duke
Cosimo 11 de’ Medici, who appointed him Chief Mathematician of his court,
gave him a home and handsome salary, and protected him from the Jesuits,
who dominated the papacy and had already threatened Galileo because
he championed the Copernican theory. To express his gratitude, Galileo
named the satellites of Jupiter, which he discovered in the first year of his
service under Cosimo, the Medicean stars. In Florence Galileo had the
leisure to pursue his studies and to write.

His advocacy of the Copernican theory irked the Roman Inquisition,
and in 1616 he was called to Rome. His teachings on the heliocentric theory
were condemned by the Inquisition; he had to promise not to publish any
more on this subject. In 1630 Pope Urban VIII did give him permission to
publish if he would make his book mathematical and not doctrinal. There-
upon, in 1632, he published his classic Dialogo dei massimi sistemi (Dialogue
on the Great World Systems). The Roman Inquisition summoned him
again in 1633 and under the threat of torture impelled him to recant his
advocacy of the heliocentric theory. He was again forbidden to publish
and required to live practically under house arrest. But he undertook to



328 THE MATHEMATIZATION OF SCIENCE

write up his years of thought and work on the phenomena of motion and on
the strength of materials. The manuscript, entitled Discorsi e dimostrazioni
matemaliche intorno & due nuove scienze (Discourses and Mathematical Demon-
strations Concerning Two New Sciences, also referred to as Dialogues
Concerning Two New Sciences), was secretly transported to Holland and
published there in 1638. This is the classic in which Galileo presented his new
scientific method. He defended his actions with the words that he had ncver
“declined in piety and reverence for the Church and my own conscience.”

Galileo was an extraordinary man in many fields. He was a keen
astronomical observer. He is often called the father of modern invention;
though he did not invent the telescope or “perplexive glasses,” as Ben
Jonson called them, he was immediately able to construct one when he
heard of the idea. He was an independent inventor of the microscope, and
he designed the first pendulum clock. He also designed and made a compass
with scales that automatically yielded the results of numerical computations
so the user could read the scales and avoid having to do the calculations.
This device was so much in demand that he produced many for sale.

Galileo was the first important modern student of sound. He suggested
a wave theory of sound and began work on pitch, harmonics, and the
vibrations of strings. This work was continued by Mersenne and Newton
and became a major inspiration for mathematical work in the cighteenth
century.

Galileo’s major writings, though concerned with scientific subjects, are
still regarded as literary masterpieces. His $idereus Nuncius (Sidereal Messen-
ger) of 1610, in which he announced his astronomical observations and
declared himself in support of Copernican theory, was an immediate success,
and he was elected to the prestigious Academy of the Lynx-like in Rome.
His two greatest classics, the Dialogue on the Great World Systems and Dialogues
Concerning Two New Sciences, are clear, direct, witty, yet profound. In both,
Galileo has one character present thk current views, against which another
argues cleverly and tenaciously to show the fallacies and weaknesses of these
views and the strengths of the new ones.

In his philosophy of science Galileo broke sharply from the speculative
and mystical in favor of a mechanical and mathematical view of nature. He
also believed that scientific problems should not become enmeshed in and
beclouded by theological arguments. Indeed, one of his achievements in
science, though somewhat apart from the method we are about to examine,
is that he recognized clearly the domain of science and severed it sharply
from religious doctrines.

Galileo, like Descartes, was certain that nature is mathematically de-
signed. His statement of 1610 is famous:

Philosophy [nature] is written in that great book which ever lies before
our eyes—I mean the universe—but we cannot understand it if we do
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not first learn the language and grasp the symbols in which it is written.
The book is written in the mathematical language, and the symbols are
triangles, circles and other geometrical figures, without whose help it is
impossible to comprehend a single word of it; without which one wanders
in vain through a dark labyrinth.*

Nature is simple and orderly and its behavior is regular and necessary. It
acts in accordance with perfect and immutable mathematical laws. Divine
reason is the source of the rational in nature; God put into the world that
rigorous mathematical necessity that men reach only laboriously. Mathe-
matical knowledge is therefore not only absolute truth, but as sacrosanct as
any line of Scripture. In fact it is superior, for there is much disagreement
about the Scriptures, but there can be none about mathematical truths.

Another doctrine, the atomism of the Greek Democritus, is clearer in
Galileo than in Descartes. Atomism presupposed empty space (which Des-
cartes did not accept) and individual, indestructible atoms. Change con-
sisted in the combination and separation of atoms. All qualitative varieties
in bodies were due to quantitative variety in number, size, shape, and
spatial arrangement of the atoms. The atom’s chief properties were impene-
trability and indestructibility; these properties served to explain chemical
and physical phenomena. Galileo’s espousal of atomism placed it in the
forefront of scientific doctrines.

Atomism led Galileo to the doctrine of primary and secondary qualities.
He says, “If ears, tongues, and noses were removed, I am of the opinion
that shape, quantity [size] and motion would remain, but there would be
an end of smells, tastes, and sounds, which abstracted from the living
creature, I take to be mere words.” Thus in one swoop Galileo, like Des-
cartes, stripped away a thousand phenomena and qualities to concentrate
on matter and motion, properties that are mathematically describable. It is
perhaps not too surprising that in the century in which problems of motion
were the most prominent and serious, scientists should find motion to be a
fundamental physical phenomenon. '

The concentration on matter and motion was only the first step in
Galileo’s new approach to nature. His next thought, also voiced by Des-
cartes, was that any branch of science should be patterned on the model of
mathematics. This implies two essential steps. Mathematics starts with
axioms—clear, self-evident truths—and from these proceeds by deductive
reasoning to establish new truths. Any branch of science, then, should start
with axioms or principles and then proceed deductively. Moreover, one
should extract from the axioms as many consequences as possible. This
thought, of course, goes back to Aristotle, who also aimed at deductive
structure in science with the mathematical model in mind.

However, Galileo departed radically from the Greeks, the medieval

1. Opere, 4, 171,
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scientists, and even Descartes in his method of obtaining first principles. The
pre-Galileans and Descartes had believed that the mind supplied the basic
principles; it had but to think about any class of phenomena and it would
immediately recognize fundamental truths. This power of the mind was
clearly evidenced in mathematics. Axioms such as “equals added to equals
give equals” and “two points determine a line” suggested themselves im-
mediately in thinking about number or geometrical figures, and were in-
dubitable truths. So too had the Grecks found some physical principles
equally appealing. That all objects in the universe should have a natural
place was no more than fitting. The state of rest secmed clearly more natural
than the state of motion. It seemed indubitable, too, that force must be
applied to put and keep bodies in motion. To believe that the mind supplies
fundamental principles did not deny that observations might play a role in
obtaining these principles. But the observations merely evoked the correct
principles, just as the sight of a familiar face might call to mind facts about
that person.

The Greek and medieval scientists were so convinced that there were
a priori fundamental principles that when occasional observations did not
fit they invented special explanations to preserve the principles but still
account for the anomalies. These men, as Galileo put it, first decided how
the world should function and then fitted what they saw into their precon-
ceived principles.

Galileo decided that in physics, as opposed to mathematics, first
principles must come from experifnce and experimentation. The way to
obtain correct and basic principles is to pay attention to what nature says
rather than what the mind prefers. Nature, he argued, did not first make
men’s brains and then arrange the world to be acceptable to human in-
tellects. To the medieval thinkers who kept repeating Aristotle and debating
what he meant, Galileo addresseq the criticism that knowledge comes from
observation and not from books, and that it was useless to debate about
Aristotle. He says, “ When we have the decrees of nature, authority goes for
nothing. ...” Of course some Renaissance thinkers and Galileo’s contem-
porary Francis Bacon had also arrived at the conclusion that experimentation
was necessary; in this particular aspect of his new method, Galileo was not
ahcad of all others. Yet the modernist Descartes did not grant the wisdom
of Galileo’s reliance upon experimentation. The facts of the senses, Des-
cartes said, can only lead to delusion, but reason penetrates such delusions.
From the innate general principles supplied by the mind, we can deduce
particular phenomena of nature and understand them. Galileo did appre-
ciate that one may glean an incorrect principle from experimentation and
that as a consequence the deductions from it could be incorrect. Hence he
proposed the use of experiments to check the conclusions of his reasonings
as well as to acquire basic principles.
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“Galileo was actually a transitional figure as far as experimentation is
concerned. He, and Isaac Newton fifty years later, believed that a few key
or critical experiments would yield correct fundamental principles. More-
over, many of Galileo’s so-called experiments were really thought-experi-
ments; that is, he relied upon common experience to imagine what would
happen if an experiment were performed. He then drew a conclusion as
confidently as if he had actually performed the experiment. When in the
Dialogue on the Great World Systems he describes the motion of a ball dropped
from the mast of a moving ship, he is asked by Simplicio, one of the charac-
ters, whether he had made an experiment. Galileo replies, “No, and I do
not need it, as without any experience I can confirm that it is so, because it
cannot be otherwise.” He says in fact that he experimented rarely, and then
primarily to refute those who did not follow the mathematics. Though
Newton performed some famous and ingenious experiments, he too says
that he used experiments to make his results physically intelligible and to
convince the common people.

The truth of the matter is that Galileo had some preconceptions about
nature, which made him confident that a few experiments would suffice.
He believed, for example, that nature was simple. Hence when he considered
freely falling bodies, which fall with increasing velocity, he supposed that
the increase in velocity is the same for each second of fall. This was the
simplest ““truth.” He believed also that nature is mathematically designed,
and hence any mathematical law that seemed to fit even on the basis of
rather limited experimentation appeared to him to be correct.

For Galileo, as well as for Huygens and Newton, the deductive, mathe-
matical part of the scientific enterprise played a greater part than the ex-
perimental. Galileo was no less proud of the abundance of theorems that
flow from a single principle than of the discovery of the principle itself. The
men who fashioned modern science—Descartes, Galileo, Huygens, and
Newton (we can also include Copernicus and Kepler)—approached the study
of nature as mathematicians, in their gencral method and in their concrete
investigations. They were primarily speculative thinkers who expected to
apprchend broad, deep (but also simple), clear, and immutable mathe-
matical principles either through intuition or through crucial observations
and experiments, and then to deduce new laws from these fundamental
truths, entirely in the manner in which mathematics proper had constructed
its geometry. The bulk of the activity was to be the deductive portion;
whole systems of thought were to be so derived.

What the great thinkers of the seventeenth century envisaged as the
proper procedure for science did indeed prove to be the profitable course.
The rational search for laws of nature produced, by Newton’s time, ex-
tremely valuable results on the basis of the slimmest observational and ex-
perimental knowledge. The great scientific advances of the sixteenth and
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seventeenth centuries were in astronomy, where observation offered little
that was new, and in mechanics, where the experimental results were hardly
startling and certainly not decisive, whereas the mathematical theory
attained comprehensiveness and perfection. And for the next two centuries
scientists produced deep and sweeping laws of nature on the basis of very
few, almost trivial, observations and experiments.

The expectation of Galileo, Huygens, and Newton that just a few
experiments would suffice can be readily understood. Because these men
were convinced that nature is mathematically designed, they saw no reason
why they could not proceed in scientific matters much as mathematicians
had proceeded in their domain. As John Herman Randall says in Making
of the Modern Mind, *“Science was born of a faith in the mathematical inter-
pretation of nature.. ..”

Galileo did, however, obtain a few principles from experience; and in
this work also his approach was a radical departure from that of his prede-
cessors. He decided that one must penetrate to what is fundamental in
phenomena and start there. In Two New Sciences he says that it is not possible
to treat the infinite variety of weights, shapes, and velocities. He had ob-
served that the speeds with which dissimilar objects fall differ less in air than
in water. Hence the thinner the medium, the less difference in speed of fall
among bodies. “Having observed this I came to the conclusion that in a
medium totally devoid of resistance all bodies would fall with the same
speed.” What Galileo was doing here was to strip away the incidental or
minor effects in an effort to get at the major one.

Of course, actual bodies do fall in resisting media. What could Galileo
say about such motions? His answer was “. .. hence, in order to handle this
matter in a scientific way, it is necessary to cut loose from these difficulties
[air resistance, friction, etc.] and having discovered and demonstrated the
theorems in the case of no resistance, to use them and apply them with such
limitations as experience will teach.”

Having stripped away air resistance and friction, Galileo sought basic
laws for motion in a vacuum. Thus he not only contradicted Aristotle and
even Descartes by thinking of bodies moving in empty space, but did Jjust
what the mathematician does in studying real figures. The mathematician
strips away molecular structure, color, and thickness of lines to get at some
basic properties and concentrates on these. So did Galileo penetrate to basic
physical factors. The mathematical method of abstraction is indeed a step
away from reality but, paradoxically, it leads back to reality with greater
power than if all the factors actually present are taken into account at once.

Thus far Galileo had formulated a number of methodological prin-
ciples, many of which were suggested by the approach mathematics had
employed in geometry. His next principle was to use mathematics itself,
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but in a special way. Unlike the Aristotelians and the late medieval scientists,
who had fastened upon qualities they regarded as fundamental and studied
the acquisition and loss of qualities or debated the meaning of the qualities,
Galileo proposed to seek guantitative axioms. This change is most important;
we shall see the full significance of it later, but an elementary example may
be useful now. The Aristotelians said that a ball falls because it has weight,
and that it falls to the earth because every object seeks its natural place and
the natural place of heavy bodies is the center of the earth. These principles
are qualitative. Even Kepler’s first law of motion, that the path of each
planet is an ellipse, is a qualitative statement. By contrast, let us consider
the statement that the speed (in feet per second) with which a ball falls is
32 times the number of seconds it has been falling, or in symbols, » = 322
This is a quantitative statement about how a ball falls. Galileo intended to
seek such quantitative statements as his axioms, and he expected to deduce
new ones by mathematical means. These deductions would also give quanti-
tative knowledge. Moreover, as we have scen, mathematics was to be his
essential medium.

The decision to seek quantitative knowledge expressed in formulas
carried with it another radical decision, though first contact with it hardly
reveals its full significance. The Aristotelians believed that one of the tasks
of science was to explain why things happened; explanation meant unearth-
ing the causes of a phenomenon. The statement that a body falls because it
has weight gives the effective cause of the fall and the statement that it
seeks its natural place gives the final cause. But the quantitative statement
v = 32, for whatever it may be worth, gives no explanation of why a ball
falls; it tells only how the speed changes with the time. In other words,
formulas do not explain; they describe. The knowledge of nature Galileo
sought was descriptive. He says in Two New Sciences, “The cause of the ac-
celeration of the motion of falling bedies is not a necessary part of the in-
vestigation.” More generally, he points out that he will investigate and
demonstrate some of the properties of motion without regard to what the
causes might be. Positive scientific inquiries were to be separated from
questions of ultimate causation, and speculation as to physical causes was to
be abandoned.

First reactions to this principle of Galileo are likely to be negative.
Description of phenomena in terms of formulas hardly seems to be more
than a first step. It would seem that the true function of science had really
been grasped by the Aristotelians, namely, to explain why phenomena
happened. Even Descartes protested Galileo’s decision to seek descriptive
formulas. He said, “Everything that Galileo says about bodies falling in
empty space is built without foundation: he ought first to have determined
the nature of weight.”” Further, said Descartes, Galileo should reflect on
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ultimate reasons. But we shall see clearly after a few chapters that Galileo’s
decision to aim for description was the deepest and most fruitful idea that
anyone has had about scientific methodology.

Whereas the Aristotelians had talked in terms of qualities such as
fluidity, rigidity, essences, natural places, natural and violent motion, and
potentiality, Galileo chose an entirely new set of concepts, which, moreover,
were measurable, so that their measures could be related by formulas.
Some of them are: distance, time, speed, acceleration, force, mass, and
weight. These concepts are too familiar to surprise us. But in Galileo’s time
they were radical choices, at least as fundamental concepts; and these are
the ones that proved most instrumental in the task of understanding and
mastering nature.

We have described the essential features of Galileo’s program. Some of
the ideas in it had been espoused by others; some were entirely original with
him. But what establishes Galileo’s greatness is that he saw so clearly what
was wrong or deficient in the current scientific efforts, shed completely the
older ways, and formulated the new procedures so clearly. Moreover, in
applying them to problems of motion he not only exemplified the methed
but succeeded in obtaining brilliant results—in other words, he showed that
it worked. The unity of his work, the clarity of his thoughts and expressions,
and the force of his argumentation influenced almost all of his contemporaries
and successors. More than any other man, Galileo is the founder of the
methodology of modern science. He was fully conscious of what he had
accomplished (see the chapter legend); so were others. The philosopher
Hobbes said of Galileo, “He has been the first to open to us the door to the
whole realm of physics.”

We cannot pursue the history of the methodology of science. However,
since mathematics became so important in this methodology and profited
so much from its adoption, we should note how completely Galileo’s pro-
gram was accepted by giants such as Newton. He asserts that experiments
are needed to furnish basic laws. Newton is also clear that the function of
science, after having obtained some basic principles, is to deduce new facts
from these principles. In the preface to his Principia, he says:

Since the ancients (as we are told by Pappus) esteemed the science of
mechanics of greatest importance in the investigation of natural things,
and the moderns, rejecting substantial forms and occult qualities, have
endeavored to subject the phenomena of nature to the laws of mathe-
matics, [ have in this treatise cultivated mathematics as far as it relates
to philosophy [science] ... and therefore I offer this work as the mathe-
matical principles of philosophy, for the whole burden in philosophy
seems to consist in this—from the phenomena of motions to investigate
the forces of nature, and then from these forces to demonstrate the other
phenomena....
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Of course, mathematical principles, to Newton as to Galileo, were
quantitative principles. He says in the Principia that his purpose is to dis-
cover and set forth the exact manner in which “all things had been ordered
in measure, number and weight.” Newton had good reason to emphasize
quantitative mathematical laws, as opposed to physical explanation, because
the central physical concept in his celestial mechanics was the force of
gravitation, whose action could not be explained at all in physical terms.
In lieu of explanation Newton had a quantitative formulation of how gravity
acted that was significant and usable. And this is why he says, at the begin-
ning of the Principia, “For I here design only to give a mathematical notion
of these forces, without considering their physical causes and seats.” Toward
the end of the book he repeats this thought:

But our purpose is only to trace out the quantity and properties of this
force from the phenomena, and to apply what we discover in some simple
cases as principles, by which, in a mathematical way, we may estimate
the effects thereof in more involved cases ... We said, in & mathematical
way [italics Newton's], to avoid all questions about the nature or quality
of this force, which we would not be understood to determine by any
hypothesis. ..”

The abandonment of physical mechanism in favor of mathematical
description shocked even great scientists. Huygens regarded the idea of
gravitation as “absurd,” because its action through empty space precluded
any mechanism. He expressed surprise that Newton should have taken the
trouble to make such a number of laborious calculations with no foundation
but the mathematical principle of gravitation. Leibniz attacked gravitation
as an incorporeal and inexplicable power; John Bernoulli (James’s brother)
denounced it as “revolting to minds accustomed to receiving no principle
in physics save those which are incontestable and evident.” But this reliance
on mathematical description even where physical understanding was com-
pletely lacking made possible Newton’s amazing contributions, to say
nothing of subsequent developments.

Because science became heavily dependent upon—almost subordinate
to—mathematics, it was the scientists who extended the domain and
techniques of mathematics; and the multiplicity of problems provided by
science gave mathematicians numerous and weighty directions for creative
work.

4. The Function Concept

The first mathematical gain from scientific investigations conducted in
accordance with Galileo’s program came from the study of motion. This
problem engrossed the scientists and mathematicians of the seventecath
century. It is easy to see why. Though Kepler's astronomy was accepted
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carly in the seventeenth century, especially after Galileo’s observations
supplied additional evidence for a heliocentric theory, Kepler’s law of
elliptical motion is only approximately correct, though it would be exact if
there were just the sun and one planet in the heavens. The ideas that the
other planets disturb the elliptical motion of any one planet and that the
sun disturbs the elliptical motion of the moon around the earth were al-
ready being considered; in fact, the notion of a gravitational force acting
between any two bodies was suggested by Kepler, among others. Hence the
problem of improving the calculation of the planets’ positions was open.
Moreover, Kepler had obtained his laws essentially by fitting curves to
astronomical data, with no explanation in terms of fundamental laws of
motion of why the planets moved in elliptical paths. The basic problem of
deriving Kepler’s laws from principles of motion posed a clear challenge.

The improvement of astronomical theory also had a practical objective.
In their search for raw materials and trade, the Europeans had undertaken
large-scale navigation that involved sailing long distances out of sight of
land. Mariners therefore needed accurate methods of determining latitude
and longitude. The determination of latitude can be made by direct obser-
vation of the sun or the stars, but determination of longitude is far more
difficult. In the sixteenth century the methods of doing it were so inaccurate
that navigators were often in error as much as 500 miles. After about 1514,
the direction of the moon relative to the stars was used to determine longi-
tude. These directions, as seen from some standard place at various times,
were tabulated. A navigator would determine the direction of the moon,
which was not affected much by his being in a different location, and deter-
mine his local time by using, for example, the directions of the stars. Directly
from the tables or by interpolation he could find the time at the standard
location when the moon had the measured direction and so compute the
difference in time between his position and the standard one. Each hour of
difference means a 15-degree difference in longitude. This method, however,
was not accurate. Because the ships of those times were constantly heaving,
it was difficult to obtain the moon’s direction accurately; but, because the
moon does not move much relative to the stars in a few hours, the direction
of the moon had to be rather precisely determined. A mistake of onc minute
of angle means an error of half a degree of longitude; but even a measure
accurate to within one minute was far beyond the capabilities of those times.
Though other methods of determining longitude were suggested and tried,
better knowledge of the moon’s path to extend and improve the tables
seemed indispensable and many scientists, including Newton, worked on
the problem. Even in Newton’s time the knowledge of the moon’s position
was 5o inaccurate that use of the tables led to errors of as much as 100 miles
in determining position at sea.

The governments of Europe were very much concerned, because
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shipping losses were considerable. In 1675 King Charles II of England set
up the Royal Observatory at Greenwich to obtain better observations on
the moon’s motion and to serve as a fixed station for longitude. In 1712 the
British government established a Commission for the Discovery of Longitude
and offered rewards of up to £20,000 for ideas on how to measure longitude,

The problem of explaining terrestrial motions also faced seventeenth-
century scientists. Under the heliocentric theory the earth was both rotating
and revolving around the sun. Why then should objects stay with the earth?
Why should dropped objects fall to earth if it was no longer the center of the
universe? Moreover, all motions, projectile motion for example, seemed to
take place as though the earth were at rest. These questions engaged the
attention of many men, including Cardan, Tartaglia, Galileo, and Newton.
The paths of projectiles, their ranges, the heights they could reach, and the
effect of muzzle velocity on height and range were basic questions and the
princes then, like nations now, spent great sums on the solutions. New
principles of motion were needed to account for these terrestrial phenom-
ena; and it occurred to the scientists that, since the universe was believed
to be constructed according to one master plan, the same principles that
explained terrestrial motions would also account for heavenly motions.

From the study of the various problems of motion there emerged the
specific problem of designing more accurate methods of measuring time.
Mechanical clocks, which had been in use since 1348, were not very accurate,
The Flemish cartographer Gemma Frisius (1508-55) had suggested the use
of a clock to determine longitude. A ship could carry a clock set to the time
of a place of known longitude; since the determination of local time by the
sun’s position, for example, was relatively simple, the navigator need merely
note the difference in time and translate this at once into the difference in
longitude. But no durable, accurate, seaworthy clocks were available even
by 1600.

The motion of a pendulum seemed to provide the basic mechanism for
measuring time. Galileo had observed that the time for one complete oscilla-
tion of a pendulum was constant and ostensibly independent of the ampli-
tude of the swing. He prepared the design of a pendulum clock and had his
son construct one; but it was Robert Hooke and Huygens who did the basic
work on the pendulum. Though the pendulum clock was unsuitable for a
ship (an accuracy of two or three seconds a day was needed for the purpose
of longitude-reckoning, and pendulums were too much affected by ship’s
motion), it proved immensely valuable in scientific work, as well as for
timekeeping in homes and business. A clock appropriat. for navigation was
finally designed by John Harrison (1693-1776) in 1761 and began to be
used by the end of the eighteenth century. Because a proper clock was not
available earlier, accurate determination of the motion of the moon was
still the chief scientific problem in that century.
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From the study of motion mathematics derived a fundamental concept
that was central to practically all of the work for the next two hundred years
~—the concept of a function or a relation between variables. One finds this
notion almost throughout Galileo’s Two New Sciences, the book in which he
founded modern mechanics. Galileo expresses his functional relationships in
words and in the language of proportion. Thus in his work on the strength
of materials, he has occasion to state, “The areas of two cylinders of equal
volumes, neglecting the bases, bear to each other a ratio which is the square
root of the ratio of their lengths.” Again, “The volumes of right cylinders
having equal curved surfaces are inversely proportional to their altitudes.”
In his work on motion he states, for example, “The spaces described by a
body falling from rest with a uniformly accelerated motion are to each other
as the squares of the time intervals employed in traversing these distances.”
“The times of descent along inclined planes of the same height, but of
different slopes, are to each other as the lengths of these planes.” The
language shows clearly that he is dealing with variables and functions; it
was but a short step to write these statements in symbolic form. Since the
symbolism of algebra was being extended at this time, Galileo’s statement
on the spaces described by a falling body soon was written as s = k¢ and his
statement on times of descent as ¢ = ki,

Most of the functions introduced during the seventeenth century were
first studied as curves, before the function concept was fully recognized.
This was true, for example, of the elementary transcendental functions such
as log x, sin x, and ¢*. Thus Evangelista Torricelli (1608-47), a pupil of
Galileo, in a letter of 1644 described his research on the curve we would
represent by y = ac~°* with x > 0 (the manuscript in which he wrote up
this research was not edited until 1800). The curve was suggested to Torri-
celli by the current work on logarithms. Descartes encountered the same
curve in 1639 but did not speak of its connection with logarithms. The sine
curve entered mathematics as the companion curve to the cycloid in Rober-
val’s work on the cycloid (Chap. 17, sec. 2) and appears graphed for two
periods in Wallis’s Mechanica (1670). Of course the tabular values of the
trigonometric and logarithmic functions were, by this time, known with
great precision.

It is also relevant that old and new curves were introduced by means
of motions. In Greek times, a few curves, such as the quadratrix and the
Archimedean spiral, were defined in terms of motion, but in that period
such curves were outside the pale of legitimate mathematics. The attitude
was quite different in the seventeenth century. Mersenne in 1615 defined
the cycloid (which had been known earlier) as the locus of a point on a
wheel that rolls along the ground. Galileo, who had shown that the path of
a projectile shot up into the air at an angle to the ground is a parabola,
regarded the curve as the locus of a moving point.
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With Roberval, Barrow, and Newton the concept of a curve as the path
of a moving point attains explicit recognition and acceptance. Newton says
in Quadrature of Curves (written in 1676), *I consider mathematical quantities
in this place not as consisting of very small parts, but as described by a con-
tinued motion. Lines [curves] are described, and thereby generated, not by
the apposition of parts but by the continued motion of points.... These
geneses really take place in the nature of things, and are daily seen in the
motion of bodies.”

Gradually the terms and symbolism for the various types of functions
represented by these curves were introduced. There were many subtle
difficulties that were hardly recognized. For example, the use of functions of
the form a*, with x taking on positive and negative integral and fractional
values, became common in the seventeenth century. It was assumed (until
the nineteenth century, when irrational numbers were first defined) that
the function was also defined for irrational values of x, so that no one ques-
tioned an expression of the form 2Y3, The implicit understanding was that
such a value was intermediate between that obtained for any two rational
exponents above and below V2.

Descartes’s distinction between geometric and mechanical curves
(Chap. 15, sec. 4) gave rise to the distinction between algebraic and tran-
scendental functions. Fortunately his contemporaries ignored his banishment
of what he called mechanical curves. Through quadratures, the summation
of series, and other operations that entered with the calculus, many types of
transcendental functions arose and were studied. The distinction between
algebraic and transcendental functions was clearly made by James Gregory
in 1667, when he sought to show that the area of a circular sector could not
be an algebriac function of the radius and the chord. Leibniz showed that
sin x cannot be an algebraic function of x and incidentally proved the result
sought by Gregory.? The full understanding and use of the transcendental
functions came gradually.

The most explicit definition of the function concept in the seventeenth
century was given by James Gregory in his Vera Circuli et Hyperbolae Quadratura
(1667). He defined a function as a quantity obtained from other quantities
by a succession of algebraic operations or by any other operation imaginable.
By the last phrase he meant, as he explains, that it is necessary to add to the
five operations of algebra a sixth operation, which he defines as passage to
the limit. (Gregory, as we shall see in Chapter 17, was concerned with
quadrature problems.) Gregory’s concept of function was lost sight of; but
in any case, it would soon have proved too narrow, because the series
representation of functions became widely used.

From the very beginning of his work on the calculus, that is from 1665

2. Maih. Schrifien, 5, 97-98.
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on, Newton used the term “fluent” to represent any relationship between
variables. In a manuscript of 1673 Leibniz used the word “function” to
mean any quantity varying from point to point of a curve—for example,
the length of the tangent, the normal, the subtangent, and the ordinate.
The curve itself was said to be given by an equation. Leibniz also introduced
the words “constant,” “variable,” and ‘“‘parameter,” the latter used in
connection with a family of curves.® In working with functions John Bernoulli
spoke from 1697 on of a quantity formed, in any manner whatever, of
variables and of constants;* by “any manner” he meant to cover algebraic
and transcendental expressions. He adopted Leibniz’s phrase “function of
x” for this quantity in 1698. In his Historia (1714), Leibniz used the word
“function” to mean quantities that depend on a variable.

As to notation, John Bernoulli wrote X or ¢ for a general function of
x, though in 1718 he changed to ¢x. Leibniz approved of this, but proposed
also x* and x? for functions of x, the superscript to be used when several
functions were involved. The notation f(x) was introduced by Euler in
1734.5 The function concept immediately became central in the work on
the calculus. We shall see later how the concept was extended.
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